Nuprl Lemma : list_acc_nil_red_lemma
∀b,f:Top.  (list-accum(t,a,h.f[t;a;h];b;[]) ~ b)
Proof
Definitions occuring in Statement : 
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
, 
nil: []
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
list-accum: list-accum(t,a,h.f[t; a; h];b;L)
, 
nil: []
, 
it: ⋅
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis
Latex:
\mforall{}b,f:Top.    (list-accum(t,a,h.f[t;a;h];b;[])  \msim{}  b)
Date html generated:
2018_05_21-PM-00_19_10
Last ObjectModification:
2018_05_19-AM-06_59_06
Theory : list_0
Home
Index