Nuprl Lemma : list_acc_nil_red_lemma

b,f:Top.  (list-accum(t,a,h.f[t;a;h];b;[]) b)


Proof




Definitions occuring in Statement :  list-accum: list-accum(t,a,h.f[t; a; h];b;L) nil: [] top: Top so_apply: x[s1;s2;s3] all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  list-accum: list-accum(t,a,h.f[t; a; h];b;L) nil: [] it: all: x:A. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid hypothesis

Latex:
\mforall{}b,f:Top.    (list-accum(t,a,h.f[t;a;h];b;[])  \msim{}  b)



Date html generated: 2018_05_21-PM-00_19_10
Last ObjectModification: 2018_05_19-AM-06_59_06

Theory : list_0


Home Index