Nuprl Lemma : list_n_wf

[A:Type]. ∀[n:ℤ].  (A List(n) ∈ Type)


Proof




Definitions occuring in Statement :  list_n: List(n) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list_n: List(n) subtype_rel: A ⊆B prop:
Lemmas referenced :  list_wf equal-wf-T-base length_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbZ{}].    (A  List(n)  \mmember{}  Type)



Date html generated: 2019_06_20-PM-00_40_19
Last ObjectModification: 2018_09_26-PM-02_05_54

Theory : list_0


Home Index