Nuprl Lemma : list_n_wf
∀[A:Type]. ∀[n:ℤ].  (A List(n) ∈ Type)
Proof
Definitions occuring in Statement : 
list_n: A List(n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list_n: A List(n)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
list_wf, 
equal-wf-T-base, 
length_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbZ{}].    (A  List(n)  \mmember{}  Type)
Date html generated:
2019_06_20-PM-00_40_19
Last ObjectModification:
2018_09_26-PM-02_05_54
Theory : list_0
Home
Index