Nuprl Lemma : map_length
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  (||map(f;as)|| = ||as|| ∈ ℤ)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
list_induction, 
equal_wf, 
length_wf, 
map_wf, 
list_wf, 
map_nil_lemma, 
length_of_nil_lemma, 
map_cons_lemma, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
intEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
lambdaFormation, 
rename, 
addEquality, 
because_Cache, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    (||map(f;as)||  =  ||as||)
Date html generated:
2016_05_14-AM-06_34_13
Last ObjectModification:
2015_12_26-PM-00_36_07
Theory : list_0
Home
Index