Nuprl Lemma : map_length

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  (||map(f;as)|| ||as|| ∈ ℤ)


Proof




Definitions occuring in Statement :  length: ||as|| map: map(f;as) list: List uall: [x:A]. B[x] function: x:A ⟶ B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top prop:
Lemmas referenced :  list_induction equal_wf length_wf map_wf list_wf map_nil_lemma length_of_nil_lemma map_cons_lemma length_of_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality intEquality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality lambdaFormation rename addEquality because_Cache axiomEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    (||map(f;as)||  =  ||as||)



Date html generated: 2016_05_14-AM-06_34_13
Last ObjectModification: 2015_12_26-PM-00_36_07

Theory : list_0


Home Index