Nuprl Lemma : member-map
∀[T,T':Type].  ∀f:T ⟶ T'. ∀a:T List. ∀x:T'.  ((x ∈ map(f;a)) 
⇐⇒ ∃y:T. ((y ∈ a) ∧ (x = (f y) ∈ T')))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
exists_wf, 
and_wf, 
l_member_wf, 
equal_wf, 
member_map, 
map_wf, 
iff_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,T':Type].    \mforall{}f:T  {}\mrightarrow{}  T'.  \mforall{}a:T  List.  \mforall{}x:T'.    ((x  \mmember{}  map(f;a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  a)  \mwedge{}  (x  =  (f  y))))
Date html generated:
2016_05_14-AM-06_42_39
Last ObjectModification:
2015_12_26-PM-00_29_05
Theory : list_0
Home
Index