Nuprl Lemma : member-map

[T,T':Type].  ∀f:T ⟶ T'. ∀a:T List. ∀x:T'.  ((x ∈ map(f;a)) ⇐⇒ ∃y:T. ((y ∈ a) ∧ (x (f y) ∈ T')))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x]
Lemmas referenced :  exists_wf and_wf l_member_wf equal_wf member_map map_wf iff_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality because_Cache addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[T,T':Type].    \mforall{}f:T  {}\mrightarrow{}  T'.  \mforall{}a:T  List.  \mforall{}x:T'.    ((x  \mmember{}  map(f;a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  a)  \mwedge{}  (x  =  (f  y))))



Date html generated: 2016_05_14-AM-06_42_39
Last ObjectModification: 2015_12_26-PM-00_29_05

Theory : list_0


Home Index