Nuprl Lemma : pair-sq-axiom-wf

[a,b:Top].  (<a, b> Ax ∈ Type)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top member: t ∈ T pair: <a, b> universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] bfalse: ff true: True btrue: tt ifthenelse: if then else fi  assert: b false: False implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q squash: T
Lemmas referenced :  base_wf top_wf
Rules used in proof :  because_Cache hypothesisEquality thin isectElimination isect_memberEquality lemma_by_obid equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution baseClosed closedConclusion baseApply sqequalIntensionalEquality voidElimination natural_numberEquality lambdaFormation universeEquality pointwiseFunctionalityForEquality promote_hyp sqequalExtensionalEquality independent_pairFormation Error :lambdaFormation_alt,  dependent_functionElimination independent_functionElimination Error :universeIsType,  imageMemberEquality

Latex:
\mforall{}[a,b:Top].    (<a,  b>  \msim{}  Ax  \mmember{}  Type)



Date html generated: 2019_06_20-PM-00_38_30
Last ObjectModification: 2018_10_15-PM-10_15_07

Theory : list_0


Home Index