Nuprl Lemma : rev-append-axiom
∀[c:Top]. (rev(Ax) + c ~ c)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
it: ⋅
, 
nil: []
, 
rev-append: rev(as) + bs
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_accum_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[c:Top].  (rev(Ax)  +  c  \msim{}  c)
Date html generated:
2016_05_14-AM-06_29_37
Last ObjectModification:
2015_12_26-PM-00_40_10
Theory : list_0
Home
Index