Nuprl Lemma : rev-append-axiom

[c:Top]. (rev(Ax) c)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs uall: [x:A]. B[x] top: Top sqequal: t axiom: Ax
Definitions unfolded in proof :  it: nil: [] rev-append: rev(as) bs all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom

Latex:
\mforall{}[c:Top].  (rev(Ax)  +  c  \msim{}  c)



Date html generated: 2016_05_14-AM-06_29_37
Last ObjectModification: 2015_12_26-PM-00_40_10

Theory : list_0


Home Index