Nuprl Lemma : rev-append-pair

[a,b,c:Top].  (rev(<a, b>rev(b) + <a, c>)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs uall: [x:A]. B[x] top: Top pair: <a, b> sqequal: t
Definitions unfolded in proof :  cons: [a b] rev-append: rev(as) bs all: x:A. B[x] member: t ∈ T top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uall: [x:A]. B[x]
Lemmas referenced :  list_accum_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[a,b,c:Top].    (rev(<a,  b>)  +  c  \msim{}  rev(b)  +  <a,  c>)



Date html generated: 2016_05_14-AM-06_29_34
Last ObjectModification: 2015_12_26-PM-00_40_07

Theory : list_0


Home Index