Nuprl Lemma : rev-append-pair
∀[a,b,c:Top].  (rev(<a, b>) + c ~ rev(b) + <a, c>)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
cons: [a / b]
, 
rev-append: rev(as) + bs
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
list_accum_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[a,b,c:Top].    (rev(<a,  b>)  +  c  \msim{}  rev(b)  +  <a,  c>)
Date html generated:
2016_05_14-AM-06_29_34
Last ObjectModification:
2015_12_26-PM-00_40_07
Theory : list_0
Home
Index