Nuprl Lemma : rev-append_wf

[T:Type]. ∀[as,bs:T List].  (rev(as) bs ∈ List)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-append: rev(as) bs so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_accum_wf list_wf cons_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (rev(as)  +  bs  \mmember{}  T  List)



Date html generated: 2016_05_14-AM-06_28_39
Last ObjectModification: 2015_12_26-PM-00_40_46

Theory : list_0


Home Index