Nuprl Lemma : rev-append_wf
∀[T:Type]. ∀[as,bs:T List].  (rev(as) + bs ∈ T List)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
list_accum_wf, 
list_wf, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (rev(as)  +  bs  \mmember{}  T  List)
Date html generated:
2016_05_14-AM-06_28_39
Last ObjectModification:
2015_12_26-PM-00_40_46
Theory : list_0
Home
Index