Nuprl Lemma : rev_app_cons_lemma

bs,as,a:Top.  (rev([a as]) bs rev(as) [a bs])


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs cons: [a b] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rev-append: rev(as) bs top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  top_wf list_accum_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}bs,as,a:Top.    (rev([a  /  as])  +  bs  \msim{}  rev(as)  +  [a  /  bs])



Date html generated: 2016_05_14-AM-06_29_42
Last ObjectModification: 2015_12_26-PM-00_39_58

Theory : list_0


Home Index