Nuprl Lemma : rev_app_cons_lemma
∀bs,as,a:Top.  (rev([a / as]) + bs ~ rev(as) + [a / bs])
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf, 
list_accum_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}bs,as,a:Top.    (rev([a  /  as])  +  bs  \msim{}  rev(as)  +  [a  /  bs])
Date html generated:
2016_05_14-AM-06_29_42
Last ObjectModification:
2015_12_26-PM-00_39_58
Theory : list_0
Home
Index