Nuprl Lemma : rev_app_nil_lemma
∀bs:Top. (rev([]) + bs ~ bs)
Proof
Definitions occuring in Statement : 
rev-append: rev(as) + bs
, 
nil: []
, 
top: Top
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
rev-append: rev(as) + bs
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
top_wf, 
list_accum_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}bs:Top.  (rev([])  +  bs  \msim{}  bs)
Date html generated:
2016_05_14-AM-06_29_39
Last ObjectModification:
2015_12_26-PM-00_40_05
Theory : list_0
Home
Index