Nuprl Lemma : rev_app_nil_lemma

bs:Top. (rev([]) bs bs)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T rev-append: rev(as) bs top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  top_wf list_accum_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}bs:Top.  (rev([])  +  bs  \msim{}  bs)



Date html generated: 2016_05_14-AM-06_29_39
Last ObjectModification: 2015_12_26-PM-00_40_05

Theory : list_0


Home Index