Nuprl Lemma : test-arith-length-additions
∀T:Type. ∀a:T. ∀b:T List. ∀i:ℤ.  (i < ||[a / b]|| ⇒ i < ||b|| + 1)
Proof
Definitions occuring in Statement : 
length: ||as||, 
cons: [a / b], 
list: T List, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
top: Top
Lemmas referenced : 
less_than_wf, 
length_wf, 
cons_wf, 
list_wf, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
intEquality, 
universeEquality, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}T:Type.  \mforall{}a:T.  \mforall{}b:T  List.  \mforall{}i:\mBbbZ{}.    (i  <  ||[a  /  b]||  {}\mRightarrow{}  i  <  ||b||  +  1)
 Date html generated: 
2016_05_14-AM-06_33_56
 Last ObjectModification: 
2015_12_26-PM-00_36_04
Theory : list_0
Home
Index