Nuprl Lemma : add-nth_wf

[T:Type]. ∀[L:T List]. ∀[n:ℕ]. ∀[x:T].  (add-nth(n;x;L) ∈ List)


Proof




Definitions occuring in Statement :  add-nth: add-nth(n;x;L) list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T add-nth: add-nth(n;x;L) nat:
Lemmas referenced :  append_wf firstn_wf cons_wf nth_tl_wf nat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].    (add-nth(n;x;L)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-01_55_04
Last ObjectModification: 2015_12_26-PM-05_40_12

Theory : list_1


Home Index