Nuprl Lemma : add-nth_wf
∀[T:Type]. ∀[L:T List]. ∀[n:ℕ]. ∀[x:T].  (add-nth(n;x;L) ∈ T List)
Proof
Definitions occuring in Statement : 
add-nth: add-nth(n;x;L)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add-nth: add-nth(n;x;L)
, 
nat: ℕ
Lemmas referenced : 
append_wf, 
firstn_wf, 
cons_wf, 
nth_tl_wf, 
nat_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].    (add-nth(n;x;L)  \mmember{}  T  List)
Date html generated:
2016_05_14-PM-01_55_04
Last ObjectModification:
2015_12_26-PM-05_40_12
Theory : list_1
Home
Index