Nuprl Lemma : append_cancel_wrt_permutation
∀[A:Type]. ∀as,bs,cs:A List.  (permutation(A;as @ bs;as @ cs) 
⇒ permutation(A;bs;cs))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
permutation_wf, 
append_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
cons_cancel_wrt_permutation, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
rename, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}as,bs,cs:A  List.    (permutation(A;as  @  bs;as  @  cs)  {}\mRightarrow{}  permutation(A;bs;cs))
Date html generated:
2016_05_14-PM-02_21_14
Last ObjectModification:
2015_12_26-PM-04_28_08
Theory : list_1
Home
Index