Nuprl Lemma : bl-exists-cons

[f,u,v:Top].  ((∃x∈[u v].f[x])_b f[u] ∨b(∃x∈v.f[x])_b)


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b cons: [a b] bor: p ∨bq uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  bl-exists: (∃x∈L.P[x])_b all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  reduce_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[f,u,v:Top].    ((\mexists{}x\mmember{}[u  /  v].f[x])\_b  \msim{}  f[u]  \mvee{}\msubb{}(\mexists{}x\mmember{}v.f[x])\_b)



Date html generated: 2016_05_14-PM-02_10_36
Last ObjectModification: 2015_12_26-PM-05_04_15

Theory : list_1


Home Index