Nuprl Lemma : bl-exists-nil
∀[f:Top]. ((∃x∈[].f[x])_b ~ ff)
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b
, 
nil: []
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bl-exists: (∃x∈L.P[x])_b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
reduce_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom
Latex:
\mforall{}[f:Top].  ((\mexists{}x\mmember{}[].f[x])\_b  \msim{}  ff)
Date html generated:
2016_05_14-PM-02_10_29
Last ObjectModification:
2015_12_26-PM-05_04_32
Theory : list_1
Home
Index