Nuprl Lemma : bl-exists-singleton-top
∀[f,a:Top].  ((∃x∈[a].f[x])_b ~ f[a] ∨bff)
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b
, 
cons: [a / b]
, 
nil: []
, 
bor: p ∨bq
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bl-exists: (∃x∈L.P[x])_b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
reduce_cons_lemma, 
reduce_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[f,a:Top].    ((\mexists{}x\mmember{}[a].f[x])\_b  \msim{}  f[a]  \mvee{}\msubb{}ff)
Date html generated:
2016_05_14-PM-02_10_43
Last ObjectModification:
2015_12_26-PM-05_03_58
Theory : list_1
Home
Index