Nuprl Lemma : bl-exists-singleton-top

[f,a:Top].  ((∃x∈[a].f[x])_b f[a] ∨bff)


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b cons: [a b] nil: [] bor: p ∨bq bfalse: ff uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  bl-exists: (∃x∈L.P[x])_b all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x]
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation introduction sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[f,a:Top].    ((\mexists{}x\mmember{}[a].f[x])\_b  \msim{}  f[a]  \mvee{}\msubb{}ff)



Date html generated: 2016_05_14-PM-02_10_43
Last ObjectModification: 2015_12_26-PM-05_03_58

Theory : list_1


Home Index