Nuprl Lemma : compat_wf

[T:Type]. ∀[l1,l2:T List].  (l1 || l2 ∈ ℙ)


Proof




Definitions occuring in Statement :  compat: l1 || l2 list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T compat: l1 || l2
Lemmas referenced :  or_wf iseg_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    (l1  ||  l2  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_30_02
Last ObjectModification: 2018_09_26-PM-05_51_01

Theory : list_1


Home Index