Nuprl Lemma : compose-flips_wf

k:ℕ. ∀flips:(ℕk × ℕk) List.  (compose-flips(flips) ∈ ℕk ⟶ ℕk)


Proof




Definitions occuring in Statement :  compose-flips: compose-flips(flips) list: List int_seg: {i..j-} nat: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T compose-flips: compose-flips(flips) uall: [x:A]. B[x] nat: implies:  Q prop:
Lemmas referenced :  map_wf int_seg_wf flip_wf list_wf reduce_wf compose_wf equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin productEquality natural_numberEquality setElimination rename because_Cache hypothesis functionEquality lambdaEquality spreadEquality productElimination independent_pairEquality hypothesisEquality functionExtensionality applyEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}flips:(\mBbbN{}k  \mtimes{}  \mBbbN{}k)  List.    (compose-flips(flips)  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k)



Date html generated: 2017_04_17-AM-08_20_19
Last ObjectModification: 2017_02_27-PM-04_42_34

Theory : list_1


Home Index