Nuprl Lemma : compose-flips_wf
∀k:ℕ. ∀flips:(ℕk × ℕk) List.  (compose-flips(flips) ∈ ℕk ⟶ ℕk)
Proof
Definitions occuring in Statement : 
compose-flips: compose-flips(flips)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
compose-flips: compose-flips(flips)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
map_wf, 
int_seg_wf, 
flip_wf, 
list_wf, 
reduce_wf, 
compose_wf, 
equal_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
functionEquality, 
lambdaEquality, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}flips:(\mBbbN{}k  \mtimes{}  \mBbbN{}k)  List.    (compose-flips(flips)  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  \mBbbN{}k)
Date html generated:
2017_04_17-AM-08_20_19
Last ObjectModification:
2017_02_27-PM-04_42_34
Theory : list_1
Home
Index