Nuprl Lemma : concat-cons2
∀[l,ll:Top].  (concat([l / ll]) ~ l @ concat(ll))
Proof
Definitions occuring in Statement : 
concat: concat(ll), 
append: as @ bs, 
cons: [a / b], 
uall: ∀[x:A]. B[x], 
top: Top, 
sqequal: s ~ t
Definitions unfolded in proof : 
concat: concat(ll), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
reduce_cons_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[l,ll:Top].    (concat([l  /  ll])  \msim{}  l  @  concat(ll))
 Date html generated: 
2016_05_14-AM-07_38_39
 Last ObjectModification: 
2015_12_26-PM-02_12_50
Theory : list_1
Home
Index