Nuprl Lemma : firstn_append_front_singleton

[L:Top List]. ∀a:Top. (firstn(||L [a]|| 1;L [a]) L)


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) length: ||as|| append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] top: Top all: x:A. B[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  length-singleton firstn_append_front cons_wf top_wf nil_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality sqequalAxiom because_Cache

Latex:
\mforall{}[L:Top  List].  \mforall{}a:Top.  (firstn(||L  @  [a]||  -  1;L  @  [a])  \msim{}  L)



Date html generated: 2016_05_14-PM-02_08_31
Last ObjectModification: 2015_12_26-PM-05_06_46

Theory : list_1


Home Index