Nuprl Lemma : for_hdtl_wf
∀[A,B,C:Type]. ∀[f:B ⟶ C ⟶ C]. ∀[k:C]. ∀[as:A List]. ∀[g:A ⟶ (A List) ⟶ B].  (ForHdTl{A,f,k} h::t ∈ as. g[h;t] ∈ C)
Proof
Definitions occuring in Statement : 
for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
reduce_wf, 
mapcons_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
Error :inhabitedIsType, 
isect_memberEquality, 
functionEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  C].  \mforall{}[k:C].  \mforall{}[as:A  List].  \mforall{}[g:A  {}\mrightarrow{}  (A  List)  {}\mrightarrow{}  B].
    (ForHdTl\{A,f,k\}  h::t  \mmember{}  as.  g[h;t]  \mmember{}  C)
Date html generated:
2019_06_20-PM-01_19_52
Last ObjectModification:
2018_09_26-PM-05_20_45
Theory : list_1
Home
Index