Nuprl Lemma : fseg_wf

[T:Type]. ∀[L1,L2:T List].  (fseg(T;L1;L2) ∈ ℙ)


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf list_wf equal_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (fseg(T;L1;L2)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-01_35_02
Last ObjectModification: 2015_12_26-PM-05_26_13

Theory : list_1


Home Index