Nuprl Lemma : id-biject

[T:Type]. Bij(T;T;λx.x)


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) uall: [x:A]. B[x] lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] biject: Bij(A;B;f) and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] implies:  Q member: t ∈ T prop: surject: Surj(A;B;f) exists: x:A. B[x]
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation sqequalRule hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_pairFormation because_Cache universeEquality

Latex:
\mforall{}[T:Type].  Bij(T;T;\mlambda{}x.x)



Date html generated: 2016_05_14-PM-01_53_56
Last ObjectModification: 2015_12_26-PM-05_40_06

Theory : list_1


Home Index