Nuprl Lemma : id-biject
∀[T:Type]. Bij(T;T;λx.x)
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
surject: Surj(A;B;f)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_pairFormation, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  Bij(T;T;\mlambda{}x.x)
Date html generated:
2016_05_14-PM-01_53_56
Last ObjectModification:
2015_12_26-PM-05_40_06
Theory : list_1
Home
Index