Nuprl Lemma : imax-list-is-nat
∀L:ℤ List. (imax-list([0 / L]) ∈ ℕ)
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L)
, 
cons: [a / b]
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
imax-list-cons-is-nat, 
false_wf, 
le_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
intEquality
Latex:
\mforall{}L:\mBbbZ{}  List.  (imax-list([0  /  L])  \mmember{}  \mBbbN{})
Date html generated:
2018_05_21-PM-00_32_35
Last ObjectModification:
2018_05_19-AM-06_42_23
Theory : list_1
Home
Index