Nuprl Lemma : imax-list-is-nat

L:ℤ List. (imax-list([0 L]) ∈ ℕ)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) cons: [a b] list: List nat: all: x:A. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop:
Lemmas referenced :  imax-list-cons-is-nat false_wf le_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation hypothesis intEquality

Latex:
\mforall{}L:\mBbbZ{}  List.  (imax-list([0  /  L])  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-00_32_35
Last ObjectModification: 2018_05_19-AM-06_42_23

Theory : list_1


Home Index