Nuprl Lemma : iseg-l_contains

[T:Type]. ∀x,y:T List.  (x ≤  x ⊆ y)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 l_contains: A ⊆ B list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] l_contains: A ⊆ B implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  iseg_member l_member_wf iseg_wf l_all_iff all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis addLevel because_Cache sqequalRule lambdaEquality setElimination rename setEquality productElimination functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x,y:T  List.    (x  \mleq{}  y  {}\mRightarrow{}  x  \msubseteq{}  y)



Date html generated: 2019_06_20-PM-01_29_56
Last ObjectModification: 2018_08_24-PM-11_19_47

Theory : list_1


Home Index