Nuprl Lemma : iseg_append_single

[T:Type]. ∀l1,l2:T List. ∀x:T.  (l1 ≤ l2 [x] ⇐⇒ l1 ≤ l2 ∨ (l1 (l2 [x]) ∈ (T List)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q or: P ∨ Q member: t ∈ T prop: guard: {T} exists: x:A. B[x] so_lambda: λ2x.t[x] top: Top so_apply: x[s] rev_implies:  Q squash: T true: True less_than: a < b less_than': less_than'(a;b) false: False cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff cand: c∧ B
Lemmas referenced :  equal_wf list_wf append_wf cons_wf nil_wf iseg_wf or_wf exists_wf less_than_wf length_wf length-append iseg_append_iff iff_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma cons_iseg iseg_nil null_nil_lemma null_cons_lemma length-singleton iseg_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation sqequalHypSubstitution unionElimination thin inlFormation hypothesis introduction extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule inrFormation productElimination lambdaEquality productEquality natural_numberEquality applyLambdaEquality isect_memberEquality voidElimination voidEquality addLevel impliesFunctionality because_Cache dependent_functionElimination independent_functionElimination universeEquality applyEquality imageElimination imageMemberEquality baseClosed hyp_replacement equalitySymmetry promote_hyp hypothesis_subsumption rename dependent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.  \mforall{}x:T.    (l1  \mleq{}  l2  @  [x]  \mLeftarrow{}{}\mRightarrow{}  l1  \mleq{}  l2  \mvee{}  (l1  =  (l2  @  [x])))



Date html generated: 2017_04_17-AM-08_46_08
Last ObjectModification: 2017_02_27-PM-05_04_42

Theory : list_1


Home Index