Nuprl Lemma : l-last-default_wf

[T:Type]. ∀[L:T List]. ∀[d:T].  (l-last-default(L;d) ∈ T)


Proof




Definitions occuring in Statement :  l-last-default: l-last-default(l;d) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l-last-default: l-last-default(l;d) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[d:T].    (l-last-default(L;d)  \mmember{}  T)



Date html generated: 2016_05_14-AM-07_41_37
Last ObjectModification: 2015_12_26-PM-02_51_22

Theory : list_1


Home Index