Nuprl Lemma : l_disjoint_nil_iff

[A:Type]. ∀[L:A List].  (l_disjoint(A;L;[]) ⇐⇒ True)


Proof




Definitions occuring in Statement :  l_disjoint: l_disjoint(T;l1;l2) nil: [] list: List uall: [x:A]. B[x] iff: ⇐⇒ Q true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: rev_implies:  Q l_disjoint: l_disjoint(T;l1;l2) all: x:A. B[x] not: ¬A false: False
Lemmas referenced :  l_disjoint_wf nil_wf l_disjoint_nil2 true_wf and_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache isect_memberEquality voidElimination universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    (l\_disjoint(A;L;[])  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_14-AM-07_56_04
Last ObjectModification: 2015_12_26-PM-04_50_11

Theory : list_1


Home Index