Nuprl Lemma : l_disjoint_nil_iff
∀[A:Type]. ∀[L:A List].  (l_disjoint(A;L;[]) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
false: False
Lemmas referenced : 
l_disjoint_wf, 
nil_wf, 
l_disjoint_nil2, 
true_wf, 
and_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].    (l\_disjoint(A;L;[])  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_14-AM-07_56_04
Last ObjectModification:
2015_12_26-PM-04_50_11
Theory : list_1
Home
Index