Nuprl Lemma : l_member-set

[T:Type]. ∀L:T List. ∀x:T.  ((x ∈ L)  (x ∈ L))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  l_member-settype l_member_wf list-subtype list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality hypothesis dependent_functionElimination cumulativity equalityTransitivity equalitySymmetry dependent_set_memberEquality productElimination independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    ((x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}  L))



Date html generated: 2016_05_14-AM-07_49_24
Last ObjectModification: 2015_12_26-PM-04_45_00

Theory : list_1


Home Index