Nuprl Lemma : l_member_functionality_wrt_permutation
∀[A:Type]. ∀as,bs:A List. ∀a:A.  (permutation(A;as;bs) 
⇒ (a ∈ as) 
⇒ (a ∈ bs))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
member-permutation, 
l_member_wf, 
permutation_wf, 
list_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.  \mforall{}a:A.    (permutation(A;as;bs)  {}\mRightarrow{}  (a  \mmember{}  as)  {}\mRightarrow{}  (a  \mmember{}  bs))
Date html generated:
2016_05_14-PM-02_22_00
Last ObjectModification:
2015_12_26-PM-04_27_01
Theory : list_1
Home
Index