Nuprl Lemma : l_subset_append
∀[T:Type]. ∀[L:T List].  ∀L1,L2:T List.  (l_subset(T;L1 @ L2;L) 
⇐⇒ l_subset(T;L1;L) ∧ l_subset(T;L2;L))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
l_subset: l_subset(T;as;bs)
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
member_append, 
l_member_wf, 
l_subset_wf, 
append_wf, 
and_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
because_Cache, 
productElimination, 
inlFormation, 
sqequalRule, 
inrFormation, 
unionElimination, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].
    \mforall{}L1,L2:T  List.    (l\_subset(T;L1  @  L2;L)  \mLeftarrow{}{}\mRightarrow{}  l\_subset(T;L1;L)  \mwedge{}  l\_subset(T;L2;L))
Date html generated:
2016_05_14-AM-07_54_04
Last ObjectModification:
2015_12_26-PM-04_48_33
Theory : list_1
Home
Index