Nuprl Lemma : l_subset_cons
∀[T:Type]. ∀x:T. ∀L1:T List.  ∀[L2:T List]. (l_subset(T;[x / L1];L2) 
⇐⇒ (x ∈ L2) ∧ l_subset(T;L1;L2))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
l_member: (x ∈ l)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
l_subset: l_subset(T;as;bs)
, 
member: t ∈ T
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
cons_member, 
l_member_wf, 
equal_wf, 
l_subset_wf, 
cons_wf, 
and_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
because_Cache, 
productElimination, 
inlFormation, 
cumulativity, 
sqequalRule, 
inrFormation, 
unionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L1:T  List.    \mforall{}[L2:T  List].  (l\_subset(T;[x  /  L1];L2)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L2)  \mwedge{}  l\_subset(T;L1;L2))
Date html generated:
2016_10_21-AM-10_05_13
Last ObjectModification:
2016_07_12-AM-05_25_20
Theory : list_1
Home
Index