Nuprl Lemma : l_subset_cons

[T:Type]. ∀x:T. ∀L1:T List.  ∀[L2:T List]. (l_subset(T;[x L1];L2) ⇐⇒ (x ∈ L2) ∧ l_subset(T;L1;L2))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) l_member: (x ∈ l) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q l_subset: l_subset(T;as;bs) member: t ∈ T rev_implies:  Q or: P ∨ Q prop: guard: {T}
Lemmas referenced :  cons_member l_member_wf equal_wf l_subset_wf cons_wf and_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality independent_functionElimination introduction extract_by_obid isectElimination because_Cache productElimination inlFormation cumulativity sqequalRule inrFormation unionElimination equalitySymmetry dependent_set_memberEquality applyEquality lambdaEquality setElimination rename setEquality hyp_replacement Error :applyLambdaEquality,  productEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L1:T  List.    \mforall{}[L2:T  List].  (l\_subset(T;[x  /  L1];L2)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L2)  \mwedge{}  l\_subset(T;L1;L2))



Date html generated: 2016_10_21-AM-10_05_13
Last ObjectModification: 2016_07_12-AM-05_25_20

Theory : list_1


Home Index