Nuprl Lemma : l_subset_refl
∀[T:Type]. ∀[L:T List].  l_subset(T;L;L)
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
l_subset: l_subset(T;as;bs)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
l_member_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    l\_subset(T;L;L)
Date html generated:
2016_05_14-AM-07_54_00
Last ObjectModification:
2015_12_26-PM-04_48_07
Theory : list_1
Home
Index