Nuprl Lemma : l_subset_refl

[T:Type]. ∀[L:T List].  l_subset(T;L;L)


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) list: List uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  l_subset: l_subset(T;as;bs) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop:
Lemmas referenced :  l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    l\_subset(T;L;L)



Date html generated: 2016_05_14-AM-07_54_00
Last ObjectModification: 2015_12_26-PM-04_48_07

Theory : list_1


Home Index