Nuprl Lemma : l_subset_right_cons_trivial

[T:Type]. ∀x:T. ∀L:T List.  l_subset(T;L;[x L])


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  l_subset: l_subset(T;as;bs) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q prop:
Lemmas referenced :  cons_member equal_wf l_member_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination productElimination independent_functionElimination hypothesis inrFormation universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L:T  List.    l\_subset(T;L;[x  /  L])



Date html generated: 2016_05_14-AM-07_53_57
Last ObjectModification: 2015_12_26-PM-04_48_01

Theory : list_1


Home Index