Nuprl Lemma : len_nil_lemma

len([]) 0


Proof




Definitions occuring in Statement :  len: len(as) nil: [] natural_number: $n sqequal: t
Definitions unfolded in proof :  len: len(as) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis

Latex:
len([])  \msim{}  0



Date html generated: 2016_05_14-AM-07_41_02
Last ObjectModification: 2015_12_26-PM-02_50_59

Theory : list_1


Home Index