Nuprl Definition : list-match

list-match(L1;L2;a,b.R[a; b]) ==  ∃f:ℕ||L1|| ⟶ ℕ||L2|| [(Inj(ℕ||L1||;ℕ||L2||;f) ∧ (∀i:ℕ||L1||. R[L1[i]; L2[f i]]))]



Definitions occuring in Statement :  select: L[n] length: ||as|| inject: Inj(A;B;f) int_seg: {i..j-} all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n
Definitions occuring in definition :  sq_exists: x:A [B[x]] function: x:A ⟶ B[x] and: P ∧ Q inject: Inj(A;B;f) all: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| select: L[n] apply: a
FDL editor aliases :  list-match

Latex:
list-match(L1;L2;a,b.R[a;  b])  ==
    \mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L2||  [(Inj(\mBbbN{}||L1||;\mBbbN{}||L2||;f)  \mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  R[L1[i];  L2[f  i]]))]



Date html generated: 2018_05_21-PM-00_45_40
Last ObjectModification: 2018_01_17-PM-05_39_37

Theory : list_1


Home Index