Nuprl Lemma : list-rep_wf

[T:Type]. ∀[n:ℕ]. ∀[x:T].  (list-rep(n;x) ∈ List)


Proof




Definitions occuring in Statement :  list-rep: list-rep(n;x) list: List nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-rep: list-rep(n;x) nat:
Lemmas referenced :  primrec_wf list_wf nil_wf cons_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[x:T].    (list-rep(n;x)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_02_03
Last ObjectModification: 2015_12_26-PM-01_56_00

Theory : list_1


Home Index