Nuprl Lemma : lsum_cons_lemma

as,a,f:Top.  (f[x] x ∈ [a as]) f[a] + Σ(f[x] x ∈ as))


Proof




Definitions occuring in Statement :  lsum: Σ(f[x] x ∈ L) cons: [a b] top: Top so_apply: x[s] all: x:A. B[x] add: m sqequal: t
Definitions unfolded in proof :  lsum: Σ(f[x] x ∈ L) all: x:A. B[x] member: t ∈ T top: Top
Lemmas referenced :  map_cons_lemma istype-void l_sum_cons_lemma istype-top
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis lambdaFormation_alt inhabitedIsType hypothesisEquality

Latex:
\mforall{}as,a,f:Top.    (\mSigma{}(f[x]  |  x  \mmember{}  [a  /  as])  \msim{}  f[a]  +  \mSigma{}(f[x]  |  x  \mmember{}  as))



Date html generated: 2020_05_19-PM-09_46_55
Last ObjectModification: 2019_11_12-PM-11_23_53

Theory : list_1


Home Index