Nuprl Lemma : lsum_cons_lemma
∀as,a,f:Top.  (Σ(f[x] | x ∈ [a / as]) ~ f[a] + Σ(f[x] | x ∈ as))
Proof
Definitions occuring in Statement : 
lsum: Σ(f[x] | x ∈ L)
, 
cons: [a / b]
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
lsum: Σ(f[x] | x ∈ L)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
map_cons_lemma, 
istype-void, 
l_sum_cons_lemma, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality
Latex:
\mforall{}as,a,f:Top.    (\mSigma{}(f[x]  |  x  \mmember{}  [a  /  as])  \msim{}  f[a]  +  \mSigma{}(f[x]  |  x  \mmember{}  as))
Date html generated:
2020_05_19-PM-09_46_55
Last ObjectModification:
2019_11_12-PM-11_23_53
Theory : list_1
Home
Index