Nuprl Lemma : map-map-trivial
∀[L:Top List]. ∀[X:Top ⟶ Top].  (map(λp.(fst(p));map(λx.<x, X[x]>L)) ~ L)
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
compose: f o g
, 
pi1: fst(t)
Lemmas referenced : 
top_wf, 
list_wf, 
map-map, 
map-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
functionEquality, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
voidElimination, 
voidEquality
Latex:
\mforall{}[L:Top  List].  \mforall{}[X:Top  {}\mrightarrow{}  Top].    (map(\mlambda{}p.(fst(p));map(\mlambda{}x.<x,  X[x]>L))  \msim{}  L)
Date html generated:
2016_05_14-AM-07_35_25
Last ObjectModification:
2015_12_26-PM-02_11_21
Theory : list_1
Home
Index