Nuprl Lemma : map-map-trivial

[L:Top List]. ∀[X:Top ⟶ Top].  (map(λp.(fst(p));map(λx.<x, X[x]>;L)) L)


Proof




Definitions occuring in Statement :  map: map(f;as) list: List uall: [x:A]. B[x] top: Top so_apply: x[s] pi1: fst(t) lambda: λx.A[x] function: x:A ⟶ B[x] pair: <a, b> sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top compose: g pi1: fst(t)
Lemmas referenced :  top_wf list_wf map-map map-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom functionEquality lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache voidElimination voidEquality

Latex:
\mforall{}[L:Top  List].  \mforall{}[X:Top  {}\mrightarrow{}  Top].    (map(\mlambda{}p.(fst(p));map(\mlambda{}x.<x,  X[x]>L))  \msim{}  L)



Date html generated: 2016_05_14-AM-07_35_25
Last ObjectModification: 2015_12_26-PM-02_11_21

Theory : list_1


Home Index