Nuprl Lemma : mapcons_cons_lemma
∀t,h,f:Top.  (mapcons(f;[h / t]) ~ [f h t / mapcons(f;t)])
Proof
Definitions occuring in Statement : 
mapcons: mapcons(f;as)
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mapcons: mapcons(f;as)
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
top_wf, 
list_ind_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}t,h,f:Top.    (mapcons(f;[h  /  t])  \msim{}  [f  h  t  /  mapcons(f;t)])
Date html generated:
2016_05_14-AM-07_38_27
Last ObjectModification:
2015_12_26-PM-02_12_41
Theory : list_1
Home
Index