Nuprl Lemma : mapl_wf
∀[A,B:Type]. ∀[L:A List]. ∀[f:{a:A| (a ∈ L)}  ⟶ B].  (mapl(f;L) ∈ B List)
Proof
Definitions occuring in Statement : 
mapl: mapl(f;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
mapl: mapl(f;l)
Lemmas referenced : 
map-wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
hypothesis
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[f:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  B].    (mapl(f;L)  \mmember{}  B  List)
Date html generated:
2016_05_14-PM-02_55_30
Last ObjectModification:
2015_12_26-PM-02_31_21
Theory : list_1
Home
Index