Nuprl Lemma : mapl_wf

[A,B:Type]. ∀[L:A List]. ∀[f:{a:A| (a ∈ L)}  ⟶ B].  (mapl(f;L) ∈ List)


Proof




Definitions occuring in Statement :  mapl: mapl(f;l) l_member: (x ∈ l) list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  mapl: mapl(f;l)
Lemmas referenced :  map-wf2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis

Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[f:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  B].    (mapl(f;L)  \mmember{}  B  List)



Date html generated: 2016_05_14-PM-02_55_30
Last ObjectModification: 2015_12_26-PM-02_31_21

Theory : list_1


Home Index