Nuprl Lemma : member_map2

[T,T':Type].  ∀a:T List. ∀x:T'. ∀f:{x:T| (x ∈ a)}  ⟶ T'.  ((x ∈ map(f;a)) ⇐⇒ ∃y:T. ((y ∈ a) ∧ (x (f y) ∈ T')))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  l_member_wf list_wf member_map list-subtype l_member-settype equal_wf map_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation functionEquality setEquality cumulativity hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis universeEquality independent_pairFormation dependent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_functionElimination dependent_pairFormation setElimination rename sqequalRule lambdaEquality because_Cache productEquality applyEquality functionExtensionality dependent_set_memberEquality

Latex:
\mforall{}[T,T':Type].
    \mforall{}a:T  List.  \mforall{}x:T'.  \mforall{}f:\{x:T|  (x  \mmember{}  a)\}    {}\mrightarrow{}  T'.    ((x  \mmember{}  map(f;a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((y  \mmember{}  a)  \mwedge{}  (x  =  (f  y))))



Date html generated: 2017_04_17-AM-08_49_49
Last ObjectModification: 2017_02_27-PM-05_06_40

Theory : list_1


Home Index