Nuprl Lemma : mklist-general_wf
∀[T3:Type]. ∀[n:ℕ]. ∀[h:(T3 List) ⟶ T3].  (mklist-general(n;h) ∈ T3 List)
Proof
Definitions occuring in Statement : 
mklist-general: mklist-general(n;h)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mklist-general: mklist-general(n;h)
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
list_wf, 
nil_wf, 
append_wf, 
cons_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T3:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h:(T3  List)  {}\mrightarrow{}  T3].    (mklist-general(n;h)  \mmember{}  T3  List)
Date html generated:
2016_05_14-PM-01_43_54
Last ObjectModification:
2015_12_26-PM-05_32_05
Theory : list_1
Home
Index