Nuprl Lemma : mklist-general_wf

[T3:Type]. ∀[n:ℕ]. ∀[h:(T3 List) ⟶ T3].  (mklist-general(n;h) ∈ T3 List)


Proof




Definitions occuring in Statement :  mklist-general: mklist-general(n;h) list: List nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mklist-general: mklist-general(n;h) nat:
Lemmas referenced :  primrec_wf list_wf nil_wf append_wf cons_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T3:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[h:(T3  List)  {}\mrightarrow{}  T3].    (mklist-general(n;h)  \mmember{}  T3  List)



Date html generated: 2016_05_14-PM-01_43_54
Last ObjectModification: 2015_12_26-PM-05_32_05

Theory : list_1


Home Index