Nuprl Lemma : mklist_wf
∀[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T].  (mklist(n;f) ∈ T List)
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mklist: mklist(n;f)
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
list_wf, 
nil_wf, 
append_wf, 
cons_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].    (mklist(n;f)  \mmember{}  T  List)
Date html generated:
2019_06_20-PM-01_31_04
Last ObjectModification:
2018_09_26-PM-05_51_05
Theory : list_1
Home
Index