Nuprl Lemma : nil_iseg
∀[T:Type]. ∀l:T List. [] ≤ l
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
prop: ℙ
Lemmas referenced : 
equal_wf, 
list_wf, 
append_wf, 
nil_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  []  \mleq{}  l
Date html generated:
2016_05_14-PM-01_31_57
Last ObjectModification:
2015_12_26-PM-05_24_48
Theory : list_1
Home
Index