Nuprl Lemma : nil_iseg

[T:Type]. ∀l:T List. [] ≤ l


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T append: as bs list_ind: list_ind nil: [] it: prop:
Lemmas referenced :  equal_wf list_wf append_wf nil_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation dependent_pairFormation hypothesisEquality cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}l:T  List.  []  \mleq{}  l



Date html generated: 2016_05_14-PM-01_31_57
Last ObjectModification: 2015_12_26-PM-05_24_48

Theory : list_1


Home Index