Nuprl Lemma : permutation-cons2

[A:Type]. ∀x:A. ∀L1,L2:A List.  (permutation(A;L1;L2)  permutation(A;[x L1];[x L2]))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] cand: c∧ B append: as bs list_ind: list_ind nil: [] it: cons: [a b] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  permutation_wf list_wf permutation-cons cons_wf nil_wf and_wf equal_wf append_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeEquality dependent_functionElimination productElimination independent_functionElimination dependent_pairFormation sqequalRule because_Cache independent_pairFormation lambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}x:A.  \mforall{}L1,L2:A  List.    (permutation(A;L1;L2)  {}\mRightarrow{}  permutation(A;[x  /  L1];[x  /  L2]))



Date html generated: 2016_05_14-PM-02_31_53
Last ObjectModification: 2015_12_26-PM-04_22_55

Theory : list_1


Home Index