Nuprl Lemma : permutation-cons2
∀[A:Type]. ∀x:A. ∀L1,L2:A List.  (permutation(A;L1;L2) 
⇒ permutation(A;[x / L1];[x / L2]))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
append: as @ bs
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
permutation_wf, 
list_wf, 
permutation-cons, 
cons_wf, 
nil_wf, 
and_wf, 
equal_wf, 
append_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
sqequalRule, 
because_Cache, 
independent_pairFormation, 
lambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}x:A.  \mforall{}L1,L2:A  List.    (permutation(A;L1;L2)  {}\mRightarrow{}  permutation(A;[x  /  L1];[x  /  L2]))
Date html generated:
2016_05_14-PM-02_31_53
Last ObjectModification:
2015_12_26-PM-04_22_55
Theory : list_1
Home
Index