Nuprl Lemma : poly_int_val_cons

p,l,a:Top.  (p@[a l] ~ Σ(p[i]@l a^||p|| i < ||p||))


Proof




Definitions occuring in Statement :  poly-int-val: p@l exp: i^n sum: Σ(f[x] x < k) select: L[n] length: ||as|| cons: [a b] top: Top all: x:A. B[x] multiply: m subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  bfalse: ff ifthenelse: if then else fi  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] top: Top poly-int-val: p@l member: t ∈ T all: x:A. B[x]
Lemmas referenced :  spread_cons_lemma null_cons_lemma top_wf
Rules used in proof :  voidEquality voidElimination isect_memberEquality thin dependent_functionElimination sqequalHypSubstitution sqequalRule extract_by_obid introduction hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}p,l,a:Top.    (p@[a  /  l]  \msim{}  \mSigma{}(p[i]@l  *  a\^{}||p||  -  1  -  i  |  i  <  ||p||))



Date html generated: 2017_04_20-AM-07_08_30
Last ObjectModification: 2017_04_17-AM-11_46_20

Theory : list_1


Home Index