Nuprl Lemma : poly_int_val_cons
∀p,l,a:Top.  (p@[a / l] ~ Σ(p[i]@l * a^||p|| - 1 - i | i < ||p||))
Proof
Definitions occuring in Statement : 
poly-int-val: p@l
, 
exp: i^n
, 
sum: Σ(f[x] | x < k)
, 
select: L[n]
, 
length: ||as||
, 
cons: [a / b]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
poly-int-val: p@l
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
spread_cons_lemma, 
null_cons_lemma, 
top_wf
Rules used in proof : 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}p,l,a:Top.    (p@[a  /  l]  \msim{}  \mSigma{}(p[i]@l  *  a\^{}||p||  -  1  -  i  |  i  <  ||p||))
Date html generated:
2017_04_20-AM-07_08_30
Last ObjectModification:
2017_04_17-AM-11_46_20
Theory : list_1
Home
Index