Nuprl Lemma : product-map_wf

[A,B,C:Type]. ∀[F:A ⟶ B ⟶ C]. ∀[as:A List]. ∀[bs:B List].  (product-map(F;as;bs) ∈ List)


Proof




Definitions occuring in Statement :  product-map: product-map(F;as;bs) list: List uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T product-map: product-map(F;as;bs)
Lemmas referenced :  concat_wf map_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (product-map(F;as;bs)  \mmember{}  C  List)



Date html generated: 2016_05_14-AM-07_38_47
Last ObjectModification: 2015_12_26-PM-02_12_56

Theory : list_1


Home Index