Nuprl Lemma : product-map_wf
∀[A,B,C:Type]. ∀[F:A ⟶ B ⟶ C]. ∀[as:A List]. ∀[bs:B List].  (product-map(F;as;bs) ∈ C List)
Proof
Definitions occuring in Statement : 
product-map: product-map(F;as;bs)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product-map: product-map(F;as;bs)
Lemmas referenced : 
concat_wf, 
map_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (product-map(F;as;bs)  \mmember{}  C  List)
Date html generated:
2016_05_14-AM-07_38_47
Last ObjectModification:
2015_12_26-PM-02_12_56
Theory : list_1
Home
Index