Nuprl Lemma : proper-iseg_wf

[T:Type]. ∀[L1,L2:T List].  (L1 < L2 ∈ ℙ{[1 0]})


Proof




Definitions occuring in Statement :  proper-iseg: L1 < L2 list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T proper-iseg: L1 < L2
Lemmas referenced :  and_wf iseg_wf not_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  <  L2  \mmember{}  \mBbbP{}\{[1  |  i  0]\})



Date html generated: 2016_05_14-PM-03_03_56
Last ObjectModification: 2015_12_26-PM-01_55_21

Theory : list_1


Home Index