Nuprl Lemma : proper-iseg_wf
∀[T:Type]. ∀[L1,L2:T List].  (L1 < L2 ∈ ℙ{[1 | i 0]})
Proof
Definitions occuring in Statement : 
proper-iseg: L1 < L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
proper-iseg: L1 < L2
Lemmas referenced : 
and_wf, 
iseg_wf, 
not_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    (L1  <  L2  \mmember{}  \mBbbP{}\{[1  |  i  0]\})
Date html generated:
2016_05_14-PM-03_03_56
Last ObjectModification:
2015_12_26-PM-01_55_21
Theory : list_1
Home
Index