Nuprl Lemma : remove-first-cons

[L,x,P:Top].  (remove-first(P;[x L]) if then else [x remove-first(P;L)] fi )


Proof




Definitions occuring in Statement :  remove-first: remove-first(P;L) cons: [a b] ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T remove-first: remove-first(P;L) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  list_ind_cons_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[L,x,P:Top].    (remove-first(P;[x  /  L])  \msim{}  if  P  x  then  L  else  [x  /  remove-first(P;L)]  fi  )



Date html generated: 2016_05_14-PM-02_47_11
Last ObjectModification: 2015_12_26-PM-02_38_16

Theory : list_1


Home Index